
CHAPTER 2

Wigner’s semicircle law

1. Wigner matrices

Definition 12. A Wigner matrix is a random matrix X = (Xi, j)i, j≤n where

(1) Xi, j, i < j are i.i.d (real or complex valued).
(2) Xi,i, i≤ n are i.i.d real random variables (possibly a different distribution)
(3) Xi, j = X j,i for all i, j.
(4) E[X1,2] = 0, E[|X1,2|2] = 1. E[X1,1] = 0, E[X2

1,1] < ∞.

Definition 13. Let A have i.i.d CN(0,1) entries and let H have i.i.d N(0,1) entries. Set
X = A+A∗√

2
and Y = H+H∗√

2
. X is called the GUE matrix and Y is called the GOE matrix.

Equivalently, we could have defined X (or Y ) as a Wigner matrix with X1,2 ∼ CN(0,1)
(resp. Y1,2 ∼ N(0,1)) and X1,1 ∼ N(0,2) (resp. Y1,1 ∼ N(0,2)). GUE and GOE stand for
Gaussian unitary ensemble and Gaussian orthogonal ensemble, respectively.

The significance of GUE and GOE matrices is that their eigenvalue distributions can be
computed exactly! We shall see that later in the course. However, for the current purpose of
getting limits of ESDs, they offer dispensable, but helpful, simplifications in calculations.
The following exercise explains the reson for the choice of names.

Exercise 14. Let X be a GOE (or GUE) matrix. Let P be a non-random orthognal (respec-
tively, unitary) n×n matrix. Then P∗XP d= P.

Let X be a Wigner matrix and let λ̃1, . . . , λ̃n denote the eigenvalues of X (real num-
bers, since X is Hermitian). Observe that ∑λ̃2

k = tr(X2) = ∑i, j |Xi, j|2. By the law of large
numbers, the latter converges in probability if we divide by n2 and let n→ ∞. Hence, if
we let λk = λ̃k/

√
n be the eigenvalues of X/

√
n, then n−1 ∑n

k=1 λ2
k converges in probability

to a constant. This indicates that we should scale X down by
√

n1. Let Ln and Ln denote
the ESD and the expected ESD of X/

√
n respectively. Note that we used the finiteness

of variance of entries of X in arguing for the 1/
√

n scaling. For heavy tailed entries, the
scaling will be different.

Theorem 15. Let Xn be an n×n Wigner random matrix. Then Ln → µs.c and Ln
P→ µs.c.

In this chapter we shall see three approaches to proving this theorem.
(a) The method of moments.
(b) The method of Stieltjes’ transforms
(c) The method of invariance principle.

1Recall that for a sequence of probability measures to converge, it must be tight. Often the simplest way to
check tightness is to check that the variances or second moments are bounded. This is what we did here.
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8 2. WIGNER’S SEMICIRCLE LAW

Roughly, these methods can be classified as combinatorial, analytic and probabilistic, re-
spectively. The first two methods are capable of proving Theorem 15 fully. The last method
is a general probabilistic technique which does not directly prove the theorem, but easily
shows that the limit must be the same for all Wigner matrices.

Since part of the goal is to introduce these techniques themselves, we shall not carry
out each proof to the end, particularly as the finer details get more technical than illuminat-
ing. For example, with the method of moments we show that expected ESD of GOE ma-
trices converges to semi-circular law and only make broad remarks about general Wigner
matrices. Similarly, in the Stieltjes transform proof, we shall assume the existence of fourth
moments of Xi, j. However, putting everthing together, we shall havea complete proof of
Theorem 15. These techniques can be applied with minimal modifications to several other
models of random matrices, but these will be mostly left as exercises.

2. The method of moments for expected ESD of GOE and GUE matrix

The idea behind the method of moments is to show that µn → µ, whene µn,µ ∈ P (R)
by showing that the moments

R
xpµn(dx)→

R
xpµ(dx) for all non-negative integer p. Of

course this does not always work. In fact one can find two probability measures µ and ν
with the same moments of all orders. Taking µn = ν gives a counterexample.

Result 16. Let µn,µ ∈ P (R) and ssume that
R

xpµn(dx)→
R

xpµ(dx) for all p≥ 1. If µ is
determined by its moments, then µn → µ.

Checking if a probability measure is determined by its moments is not easy. An often
used sufficient condition is summability of (

R
x2pµ(dx))−1/2p, called Carlemann’s condi-

tion. An even easier version which suffices for our purposes (for example when the limit
is the semicircle distribution) is in the following exercise.

Exercise 17. Let µn,µ ∈ P (R). Suppose µ is compactly supported. If
R

xpµn(dx) →R
xpµ(dx) for all p≥ 1, then µn → µ.

The first technique we shall use to show Wigner’s semicircle law is the method of
moments as applied to Ln. Since µs.c is compactly supported, exercise 17 shows that it
is sufficient to prove that

R
xpLn(dx)→

R
xpµs.c(dx) for all p. The key observation is the

formula

(4)
Z

xpLn(dx) =
1
n

n

∑
k=1

λp
k =

1
n

tr(X/
√

n)p =
1

n1+ p
2

n

∑
i1,...,ip=1

Xi1,i2 . . .Xip,i1

which links spectral quantities to sums over entries of the matrix X . By taking expectations,
we also get

(5)
Z

xpLn(dx) =
1
n

n

∑
k=1

λp
k =

1
n

tr(X/
√

n)p =
1

n1+ p
2

n

∑
i1,...,ip=1

E[Xi1,i2 . . .Xip,i1 ]

which will help in showing that Ln → µs.c.. We first carry out the method of moments for
the expected ESD of a GOE matrix, and later go on to the more involved statement about
the ESD of a general Wigner matrix. The first goal is to see how the semicircle distribution
arises.

The idea is to use the formula (5) and evaluate the expectation on the right hand side
with the help of the Wick formula of exercise 2. The rest of the work is in keeping track of
the combinatorics to see how the semicircle moments emerge. To get the idea, we first do
it by hand for a few small values of q in (5). We work with the GOE matrix X . Remember
that Xi,i ∼ N(0,2) and Xi, j ∼ N(0,1) for i < j.
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(i) Case, q=1. E[Xi, jXj,i] = 1 for j != i and 2 for j = i. Hence E[tr(X2)] = 2n + 2
(n

2
)

=
n2 +n and

Z
x2 Ln(dx) =

1
n2 E[trX2] = 1.

(ii) Case q = 2. From the Wick formula for real Gaussians, E[Xi, jXj,kXk,!X!,i] becomes

= E[Xi, jXj,k]E[Xk,!X!,i]+E[Xi, jXk,!]E[Xj,kX!,i]+E[Xi, jX!,i]E[Xj,kXk,!]
= (δi,k +δi, j,k)+(δi,kδ j,! +δi,!δ j,k)(δi,kδ j,! +δi, jδk,!)+(δ j,! +δi, j,!)(δ j,! +δ j,k,!)

corresponding to the three matchings {{1,2},{3,4}}, {{1,3},{2,4}}, {{1,4},{2,3}}
respectively. Observe that the diagonal entries are also taken care of, since their vari-
ance is 2. This looks messy, but look at the first few terms. When we sum over all
i, j,k,!, we get

∑
i, j,k,!

δi,k = n3, ∑
i, j,k,!

δi, j,k = n2, ∑
i, j,k,!

(δi,kδ j,!)2 = n2.

It is clear that what matters is how many of the indices i, j,k,! are forced to be equal
by the delta functions. The more the constraints, the smaller the contribution upon
summing. Going back, we can see that only two terms (δi,k in the first summand and
δ j,! term in the third summand) contribute n3, while the other give n2 or n only.

Z
x4 Ln(dx) =

1
n3 E[trX4] =

1
n3 ∑

i, j,k,!
(δi,k +δ j,!) +

1
n3 O(n2) = 2+O(n−1).

Observe that the two non-crossing matchings {{1,2},{3,4}} and {{1,4},{2,3}}
contributed 1 each, while the crossing-matching {{1,3},{2,4}} contributed zero in
the limit. Thus, recalling exercise 2, we find that

R
x4 Ln(dx)→

R
x4 µs.c.(dx)

(iii) Case q = 3. We need to evaluate E[Xi1,i2Xi2,i3 . . .Xi6,i1 ]. By the wick formula, we get
a sum over matching of [6]. Consider two of these matchings.
(a) {1,4},{2,3},{5,6}: This is a non-crossing matching. We get

E[Xi1,i2Xi4,i5 ]E[Xi2,i3Xi3,i4 ]E[Xi5,i6Xi6,i1 ]
= (δi1,i4δi2,i5 +δi1,i5δi2,i4)(δi2,i4 +δi2,i3,i4)(δi5,i1 +δi5,i1,i6)
= δi1,i5δi2,i4 +[. . .].

When we sum over i1, . . . , i6, the first summand gives n4 while all the other terms
(pushed under [. . .]) give O(n3). Thus the contribution from this matching is
n4 +O(n3).

(b) {1,5},{2,6},{3,4}: A crossing matching. We get which is equal to

E[Xi1,i2 Xi5,i6 ]E[Xi2,i3Xi6,i1 ]E[Xi3,i4Xi4,i5 ]
= (δi1,i5δi2,i6 +δi1,i6δi2,i5)(δi2,i6δi3,i1 +δi2,i1δi3,i6)(δi3,i5 +δi3,i4,i5)

It is easy to see that all terms are O(n3). Thus the total contribution from this
matching is O(n3).

We leave it as an exercise to check that all crossing matchings of [6] give O(n3)
contribution while the non-crossing ones give n4 +O(n3). Thus,

Z
x6 Ln(dx) =

1
n4 E[trX6] =

1
n4 (C6n4 +O(n3))→C6 =

Z
x6µs.c(dx).
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FIGURE 1. Three of the four surfaces that can be got by gluing a quadrilateral.

3. Expected ESD of GOE or GUE matrix goes to semicircle

Proposition 18. Let X = (Xi, j)i, j≤n be the GOE matrix and let Ln be the ESD of Xn/
√

n.
Then Ln → µs.c.

To carry out the convergence of moments
R

x2qLn(dx)→
R

x2qµ(dx) for general q, we
need some preparation in combinatorics.

Definition 19. Let P be a polygon with 2q vertices labeled 1,2, . . . ,2q. A gluing of P is a
matching of the edges into pairs along with an assignment of sign {+,−} to each matched
pair of edges. Let M †

2q denote the set of all gluings of P. Thus, there are 2q(2q− 1)!!
gluings of a polygon with 2q sides.

Further, let us call a gluing M ∈M †
2q to be good if the underlying matching of edges

is non-crossing and the orientations are such that matched edges are oriented in opposite
directions. That is, [r,r +1] can be matched by [s+1,s] but not with [s,s+1]. The number
of good matchings is Cq, by part (3) of exercise 9.

Example 20. Let P be a quadrilateral with vertices 1,2,3,4. Consider the gluing M =
{{[1,2], [4,3]},{[2,3], [1,4]}}. It means that the edge [1,2] is identified with [4,3] and the
edge [2,3] is identified with [1,4]. If we actually glue the edges of the polygon according
to these rules, we get a torus2. The gluing M′ = {{[1,2], [3,4]},{[2,3], [1,4]}} is different
from M. What does the gluing give us? We identify the edges [2,3] and [1,4] as before,
getting a cylinder. Then we glue the two circular ends in reverse orientation. Hence the
resulting surface is Klein’s bottle. See Figure 1.

For a polygon P and a gluing M, let VM denote the number of distinct vertices in P
after gluing by M. In other words, the gluing M gives an equivalence relationship on the
vertices of P, and VM is the number of equivalence classes.

Lemma 21. Let P be a polygon with 2q edges and let M ∈ M †
2q. Then VM ≤ q + 1 with

equality if and only if M is good.

Assuming the lemma we prove the convergence of Ln to semicircle.

2Informally, gluing means just that. Formally, gluing means that we fix homeomorphism f : [1,2]→ [3,4]
such that f (1) = 3 and f (2) = 4 and a homeomorphism g : [2,3]→ [1,4] such that g(2) = 1 and g(3) = 4. Then
define the equivalences x∼ f (x), y∼ g(y). The resulting quotient space is what we refer to as the glued surface.
It is locally homeomorphic to R2 which justifies the word “surface”. The quotient space does not depend on the
choice of homeomorphisms f and g. In particular, if we reverse the orientations of all the edges, we get the same
quotient space.



3. EXPECTED ESD OF GOE OR GUE MATRIX GOES TO SEMICIRCLE 11

PROOF OF PROPOSITION 18.

E[Xi1,i2 . . .Xi2q,i1 ] = ∑
M∈M2q

∏
{r,s}∈M

E[Xir ,ir+1Xis,is+1 ]

= ∑
M∈M2q

∏
{r,s}∈M

(δir ,is δir+1,is+1 +δr,s+1δr+1,s)

= ∑
M∈M †

2q

∏
{e, f}∈M

δie,i f .(6)

Here for two edges e, f , if e = [r,r + 1] and s = [s,s + 1] (or f = [s + 1,s]), then δie,i f

is just δir ,isδir+1,is+1 (respectively δir ,is+1δir+1,is ). Also observe that diagonal entries are
automatically taken care of since they have have variance 2 (as opposed to variance 1 for
off-diagonal entries).

Sum (6) over i1, . . . , i2q and compare with Recall (5) to get

(7)
Z

x2qLn(dx) =
1

n1+q ∑
M∈M †

2q

∑
i1,...,i2q

∏
{e, f}∈M

δie,i f =
1

n1+q ∑
M∈M †

2q

nVM .

We explain the last equality. Fix M, and suppose some two vertices r,s are identified by
M. If we choose indices i1, . . . , i2q so that some ir "= is, then the δ-functions force the term
to vanish. Thus, we can only choose one index for each equivalence class of vertices. This
can be done in nVM ways.

Invoke Lemma 21, and let n → ∞ in (7). Good matchings contribute 1 and others
contribute zero in the limit. Hence, limn→∞

R
x2qLn(dx) = Cq. The odd moments of Ln as

well as µs.c are obviously zero. By exercise 5, and employing exercise 17 we conclude that
Ln → µs.c. !

It remains to prove Lemma 21. If one knows a little algebraic topology, this is clear.
First we describe this “high level picture”. For the benefit of those not unfamiliar with
Euler characteristic and genus of a surface, we give a self-contained proof later3.
A detour into algebraic topology: Recall that a surface is a topological space in which
each point has a neighbourhood that is homeomorphic to the open disk in the plane. For
example, a polygon (where we mean the interior of the polygon as well as its boundary)
is not a surface, since points on the boundary do not have disk-like neighbourhoods. A
sphere, torus, Klein bottle, projective plane are all surfaces. In fact, these can be obtained
from the square P4 by the gluing edges appropriately.

(1) Let P = P2q and M ∈ M †
2q. After gluing P according to M, we get a surface

(means a topological space that is locally homeomorphic to an open disk in the
plane) which we denote P/M. See examples 20.

(2) If we project the edges of P via the quotient map to P/M, we get a graph GM
drawn (or “embedded”) on the surface P/M. A graph is a combinatorial object,
defined by a set of vertices V and a set of edges E. An embedding of a graph on

3However, the connection given here is at the edge of something deep. Note the exact formula for GOER
t2qdLn(t) = ∑q

g=0 n−gAq,g, where Aq,g is the number of gluings of P2q that lead to a surface with Euler charac-
teristic 2−2g. The number g is called the genus. The right hand side can be thought of as a generating function
for the number Aq,g in the variable n−1. This, and other related formulas express generating functions for maps
drawn on surfaces of varying genus in terms of Gaussian integrals over hermitian matrices, which is what the left
side is. In particular, such formulas have been used to study “random quadrangulations of the sphere”, and other
similar objects, using random matrix theory. Random planar maps are a fascinating and active research are in
probability, motivated by the notion of “quantum gravity” in physics.
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a surface is a collection of function f : V → S and fe : [0,1]→ S for each e ∈ E
such that f is one-one, for e = (u,v) the function fe is a homeomorphism such
that fe(0) = f (u) and fe(1) = f (v), and such that fe((0,1)) are pairwise disjoint.
For an embedding, each connected component of S\∪e∈E fe[0,1] is called a face.
A map is an embedding of the graph such hat each face is homeomorphic to a
disk.

(3) For any surface, there is a number χ called the Euler characteristic of the surface,
such that for any map drawn on the surface, V − E + F = χ, where V is the
number of vertices, E is the number of edges and F is the number of faces of
the graph. For example, the sphere has χ = 2 and the torus has χ = 0. The
Klein bottle also has χ = 0. The genus of the surface is related to the Euler
characteristic by χ = 2−2g.

(4) A general fact is that χ≤ 2 for any surface, with equality if and only if the surface
is simply connected (in which case it is homeomorphic to the sphere).

(5) The graph GM has F = 1 face (the interior of the polygon is the one face, as it
is homeomorphically mapped under the quotient map), E = q edges (since we
have merged 2q edges in pairs) and V = VM vertices. Thus, VM = χ(GM)−1+q.
By the previous remark, we get VM ≤ q + 1 with equality if and only if P/M is
simply connected.

(6) Only good gluings lead to simply connected P/M.
From these statements, it is clear that Lemma 21 follows. However, for someeone unfamil-
iar with algebraic topology, it may seem that we have restated the problem without solving
it. Therefore we give a self-contained proof of the lemma now.

PROOF OF LEMMA 21. After gluing by M, certain vertices of P are identified. If
VM > q, there must be at least one vertex, say r, of P that was not identified with any other
vertex. Clearly, then M must glue [r−1,r] with [r,r+1]. Glue these two edges, and we are
left with a polygon Q with 2q−2 sides with an edge sticking out. For r to remain isolated,
it must not enter the gluing at any future stage. This means, the gluing will continue within
the polygon Q. Inductively, we conclude that Q must be glued by a good gluing. Retracing
this to P, we see that M must be a good gluing of P. Conversely, if M is a good gluing, it
is easy to see that VM = q+14. !
Exercise 22. Show that the expected ESD of the GUE matrix also converges to µs.c..

4. Wishart matrices

The methods that we are going to present, including the moment method, are appli-
cable beyond the simplest model of Wigner matrices. Here we remark on what we get for
Wishart matrices. Most of the steps are left as exercises.

Definition 23. Let m < n and let Xm×n be a random matrix whose entries are i.i.d. If
E[Xi, j] = 0 and E[|Xi, j|2] = 1, we say that the m×m matrix A = XX∗ is a Wishart ma-
trix. If in addition, Xi, j are i.i.d N(0,1) (or CN(0,1)), then A is called a real (or complex,
respectively) Gaussian Wishart matrix.

4Thanks to R. Deepak for this neat proof. Another way to state it is as follows. Consider the polygon P
(now a topological space homeomorphic to the closed disk). Glue it by M to get a quotient space P/M. Consider
the graph G formed by the edges of P (so G is a cycle). Project to G to P/M. The resulting graph GM is connected
(since G was), and has q edges. Hence it can have at most q + 1 vertices, and it has q + 1 vertices if and only if
the GM is a tree. Work backwards to see that M must be good. The induction step is implicit in proving that a
graph has V ≤ E +1 with equality for and only for trees.
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Note that X is not hermitian, but A is. The positive square roots of the eigenvalues of
A are called the singular values of X . Then the following is true.

Theorem 24. Let Xm,n be a real or complex Gaussian Wishart matrix. Suppose m and n
go to infinity in such a way that m/n→ c for a finite positive constant c. Let Ln be the ESD
of An/n. Then, the expected ESD Ln → µc

m.p which is the Marcenko-Pastur distribution,
defined as the probability measure with density

dµc
m.p(t)
dt

=
1

2πc

√
(b− t)(t−a)

t
, b = 1+

√
c, a = 1−

√
c, for t ∈ [a,b].

Exercise 25. Prove Theorem 24.
Hint: The following trick is not necessary, but often convenient. Given an m×n matrix X ,
define the (m+n)× (m+n) matrix

B =
[

0m×m Xm×n
Xt

n×m 0n×n

]
.

Assume m ≤ n. By exercise 26 below, to study the ESD of A = XX∗, one might as well
study the ESD of B.

Exercise 26. For A and B as in the hint for the previous exercise, suppose m < n. If s2
k ,

k ≤ m are the eigenvalues of A, then the eigenvalues of B are ±sk, k ≤ m together with
n−m zero eigenvalues.


